HTML and PHP PROJECTS

1. Cyber World HTML Project

2. Microsoft World HTML Project


3.Sport.com HTML Project

4. Mobile Shopy HTML Project


5. Car Showroom HTML Project


6. IPL HTML Project

7. Automobiles HTML Project

8. Science Magic Tricks HTML Project


PHP BASED PROJECTS

1. World of Animation

2. Hotel Mehfill Inn


Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:
CONTACT US

Excellent Project Solution
Reg. No: 10903141
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com



Share:

C++ Projects with Source Code

1. C++ Project Code for Company Management System

2. C++ Project Code for Salary Management System

3. C++ Project Code for Dress Shop Management System

4. C++ Project Code for Shopping Management System

5. C++ Project Code for Departmental Store Management System

6. C++ Project Code for Dispensary Management System

7. C++ Project Code for Inventory Management System

8. C++ Project Code for Education Board GPA System

9. C++ Project Code for Rental Library Management System

10. C++ Project Code for Students & Teachers Information System

11. C++ Project Code for Personal Information Management System

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

VB .NET PROJECTS

1. Employee Payroll Calculation System

2. Library Management System

3. Login System

4. Medical Information System

5. Hospital Management System

6. Eye Bank Management System

7. Employee Database Management System

8. International Airline System

9. Document Management System

10. Credit Card Data Maintaining System

11. School Management System

12. Student Management System

13. Staff Detail Management System

14. Inventory System

15. Exam Scheduler System

16. Online Cinema Ticket Booking System

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Video Steganography || IEEE Based Project

ABSTRACT
            Information security has become the area of concern as a result of widespread use of communication medium over the internet. This paper focuses on the data security approach when combined with encryption and steganographic techniques for secret communication by hiding it inside the multimedia files. The high results are achieved by providing the security to data before transmitting it over the internet. The files such as images, audio, video contains collection of bits that can be further translated into images, audio and video. The files composed of insignificant bits or unused areas which can be used for overwriting of other data. This Project explains the proposed algorithm using video steganography for enhancing data security. The Steganography, Cryptography and Digital Watermarking techniques can be used to obtain security and privacy of data. The steganography is the art of hiding data inside another data such as cover medium by applying different steganographic techniques. While cryptography results in making the data human unreadable form called as cipher thus cryptography is scrambling of messages. Whereas the steganography results in exploitation of human awareness so it remains unobserved and undetected or intact. It is possible to use all file medium, digital data, or files as a cover medium in steganography. Generally steganography technique is applied where the cryptography is ineffective.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Blood / Leukemia Cancer Detection Using Image Processing

ABSTRACT
        Blood cancer is the most prevalent and it is very much dangerous among all type of cancers. Early detection of blood cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose blood cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the technician. To obviate these problems, image processing techniques and a fuzzy inference system is use in this study as promising modalities for detection of different types of blood cancer. The accuracy rate of the diagnosis of blood cancer by using the fuzzy system will be yield a slightly higher rate of accuracy then other traditional methods and will reduce the effort and time. We first discuss the preliminary of cell biology required to proceed to implement our proposed method. This project presents a new automated approach for blood Cancer detection and analysis from a given photograph of patient’s cancer affected blood sample. The proposed method is using Wavelet Transformation for image improvement, image segmentation for segmenting the different cells of blood, edge detection for detecting the boundary, size, and shape of the cells and finally Clustering for final decision of blood cancer based on the number of different cells.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Currency Recognition Using Image Processing IEEE Based Project

ABSTRACT
                The Reserve Bank is the one which issue bank notes in India. Reserve Bank, changes the design of bank notes from time to time. The appearance of the currency is part of this development and it is affected directly, where there is exploited in incorrect form by copying the currency in a manner similar to the reality. Therefore, it became necessary to implement a proposal for being a suitable as solution not inconsistent with the different cultures, time and place. This clear through add the watermarks inside currency, which is difficult to be copied. At the same time, this watermarks may be visible to the naked eye so can easily inferred or it is invisible. However the high resolution imaging devices can copy these additions. In this research, we have proposed a system to distinguish the currencies by the program that working a submission inferred to the watermark by feature extraction determined the type of currency. In addition to, it determined category of the currency. Benefit of it, is reducing as much as possible the spread of counterfeit currency and this system can be used by any user wants to make sure of the currency.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Vehicle License Number Plate Recognition VLNPR Using Matlab Project Code || IEEE Based Project

ABSTRACT
         This project presents Automatic Number Plate extraction, character segmentation and recognition for Indian vehicles. In India, number plate models are not followed strictly. Characters on plate are in different Indian languages, as well as in English. Due to variations in the representation of number plates, vehicle number plate extraction, character segmentation and recognition are crucial. We present the number plate extraction, character segmentation and recognition work, with english characters. Number plate extraction is done using Sobel filter, morphological operations and connected component analysis. Character segmentation is done by using connected component and vertical projection analysis. Automatic Number Plate Recognition (ANPR) system is an important technique, used in Intelligent Transportation System. ANPR is an advanced machine vision technology used to identify vehicles by their number plates without direct human intervention. It is an important area of research due to its many applications. The development of Intelligent Transportation System provides the data of vehicle numbers which can be used in follow up, analyses
and monitoring. ANPR is important in the area of traffic problems, highway toll collection, borders and custom security, premises where high security is needed, like Parliament, Legislative Assembly, and so on. The complexity of automatic number plate recognition work varies throughout the world. For the standard number plate, ANPR system is easier to read and recognize. In India this task becomes much difficult due to variation in plate model.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Types of Brain Tumor Detection Using Image Processing Matlab Code || IEEE Based Project

ABSTRACT
            Image processing is a process where input image is processed to get output also as an image or attributes of the image. Main aim of all image processing techniques is to recognize the image or object under consideration easier visually. Segmentation of images holds a crucial position in the field of image processing. In medical imaging, segmentation is important for feature extraction, image measurements and image display. A tumor can be defined as a mass which grows without any control of normal forces. Real time diagnosis of tumors by using more reliable algorithms has been an active of the latest developments in medical imaging and detection of brain tumor in MR and CT scan images. Hence image segmentation is the fundamental problem used in tumor detection. Image segmentation can be defined as the partition or segmentation of a digital image into similar regions with a main aim to simplify the image under consideration into something that is more meaningful and easier to analyze visually.
         Brain tumor is an abnormal growth caused by cells reproducing themselves in an uncontrolled manner. Magnetic Resonance Image (MRI) is the commonly used device for diagnosis. In MR images, the amount of data is too much for manual interpretation and analysis. During the past few years, brain tumor segmentation in Magnetic Resonance Imaging(MRI) has become an emergent research area in the field of medical imaging system. Accurate detection of size and location of brain tumor plays a vital role in the diagnosis of tumor. Image processing is an active research area in which medical image processing is a highly challenging field. Image segmentation plays a significant role in image processing as it helps in the extraction of suspicious regions from the medical images. In this project an efficient algorithm is proposed for Types of Brain tumor detection based on segmentation and clustering.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Vehicle License Number Plate Recognition

ABSTRACT
         This project presents Automatic Number Plate extraction, character segmentation and recognition for Indian vehicles. In India, number plate models are not followed strictly. Characters on plate are in different Indian languages, as well as in English. Due to variations in the representation of number plates, vehicle number plate extraction, character segmentation and recognition are crucial. We present the number plate extraction, character segmentation and recognition work, with english characters. Number plate extraction is done using Sobel filter, morphological operations and connected component analysis. Character segmentation is done by using connected component and vertical projection analysis. Automatic Number Plate Recognition (ANPR) system is an important technique, used in Intelligent Transportation System. ANPR is an advanced machine vision technology used to identify vehicles by their number plates without direct human intervention. It is an important area of research due to its many applications. The development of Intelligent Transportation System provides the data of vehicle numbers which can be used in follow up, analyses
and monitoring. ANPR is important in the area of traffic problems, highway toll collection, borders and custom security, premises where high security is needed, like Parliament, Legislative Assembly, and so on. The complexity of automatic number plate recognition work varies throughout the world. For the standard number plate, ANPR system is easier to read and recognize. In India this task becomes much difficult due to variation in plate model.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Image Steganography Hiding Secret Text Message in Cover Image

ABSTRACT
           Steganography is the one type of powerful technique which is science & art in which we have to write hidden messages, or we hide some important images, audio files, videos in this way that no-one, can find a hidden message which exists in cover images. Steganography is most strong techniques to mask the existence of unseen secret data within a cover object. Actually Stego means "Cover" graphy means "writing" that means It is nothing but we are hiding secret objects in cover image in which medium is different types of images. In practical feasible implementation practical approach would be to make the algorithm as strong as possible. In steganographed images are the most powerful objects that means cover objects, and therefore importance of image steganographed which can Embedding secret information inside images requires systematic computations. Various metrics were used to judge imperceptibility of steganography. The metrics in Matlab indicates how similar or dissimilar the stego-image compares with Cover.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

MATLAB PROJECT WITH SOURCE CODE

Share:

Matlab Code for Face Recognition Using Image Processing

ABSTRACT
             Face recognition from image is a popular topic in biometrics research. Many public places usually have surveillance cameras for image capture and these cameras have their significant value for security purpose. It is widely acknowledged that the face recognition have played an important role in surveillance system as it doesn’t need the object’s cooperation. The actual advantages of face based identification over other biometrics are uniqueness and acceptance. As human face is a dynamic object having high degree of variability in its appearance, that makes face detection a difficult problem in computer vision. In this field, accuracy and speed of identification is a main issue. The goal of this project is to evaluate various face detection and recognition methods, provide complete solution for image based face detection and recognition with higher accuracy.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Skin Disease Detection Using Image Processing IEEE Based Project

ABSTRACT
                Many of the skin diseases are very dangerous, particularly if not treated at an early stage. Skin diseases are becoming common because of the increasing pollution. Skin diseases tend to pass from one person to another. Human habits tend to assume that some skin diseases are not serious problems. Sometimes, most of the people try to treat these infections of the skin using their own method. However, if these treatments are not suitable for that particular skin problem then it would make it worse. And also sometimes they may not be aware of the dangerous of their skin diseases, for instance skin cancers. With advance of medical imaging technologies, the acquired data information is getting so rich toward beyond the human’s capability of visual recognition and efficient use for clinical assessment. In this project we propose a diagnosis system which will enable users to detect and recognize skin diseases with the help of image processing and provide the user advises or treatments based on the results obtained in a shorter time period than the existing methods. In this project, we will be constructing a diagnosis system based on the techniques of Image Processing. We will be making use of Matlab to perform the pre-processing and processing of the skin images of the users. This processing will be conducted on the different skin patterns and will be analysed to obtain the results from which we can identify which skin disease the user is suffering from. This data will help in early detection of the skin diseases and in providing their cure. Through this we will be finding a cost effective and feasible test method for the detection of skin disorders. The results obtained will be classified according to the given prototype and diagnosis accuracy assessment will be performed to provide users with efficient and fast results.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Plant Disease Detection & Classification using Image Processing

ABSTRACT
                  Diseases decrease the productivity of plant. Which restrict the growth of plant and quality and quantity of plant also reduces. Image processing is best way for detecting and diagnosis the diseases. In which initially the infected region is found then different features are extracted such as color, texture and shape. Finally classification technique is used for detecting the diseases. There are different feature extraction techniques for extracting the color, texture and edge features such as color space, color histogram, grey level co-occurrence matrix (CCM), Gabor filter, Canny and Sobel edge detector. India is agricultural country and most of population depends on agriculture. Farmers have wide range of selection in Fruit and Vegetable crops. The cultivation can be improved by technological support. Disease is caused by pathogen in plant at any environmental condition. In most of the cases diseases are seen on the leaves, fruits and stems of the plant, therefore detection of disease plays an important role in successful cultivation of crops. In most of cases plant diseases are caused by pathogens, microorganism, fungi, bacteria, viruses, etc. Sometimes unhealthy environment include soil and water is also responsible for diseases in plants.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Signature Recognition and Verification Using Image Processing

ABSTRACT
         The fact that the signature is widely used as a means of personal identification tool for humans require that the need for an automatic verification system. Verification can be performed either Offline or Online based on the application. However human signatures can be handled as an image and recognized using computer vision and neural network techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are various approaches to signature recognition with a lot of scope of research. Signature verification and recognition is a technology that can improve security in our day to day transaction held in society. This project presents a novel approach for offline signature verification. In this project signature verification using Image Processing is projected, where the signature is written on a paper are obtained using a scanner or a camera captured and presented in an image format. For authentication of signature, the proposed method is based on geometrical and statistical feature extraction and then the entire database, features are trained using neural network. The extracted features of investigation signature are compared with the previously trained features of the reference signature. This technique is suitable for various applications such as bank transactions, passports with good authentication results etc.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Brain Tumor Detection Using Segmentation and Clustering

ABSTRACT
          Image processing is an active research area in which medical image processing is a highly challenging field. Medical imaging techniques are used to image the inner portions of the human body for medical diagnosis. Brain tumor is a serious life altering disease condition. Image segmentation plays a significant role in image processing as it helps in the extraction of suspicious regions from the medical images. In this paper we have proposed segmentation of brain MRI image using K-means clustering algorithm followed by morphological filtering which avoids the mis-clustered regions that can inevitably be formed after segmentation of the brain MRI image for detection of tumor location. In this paper, we present a system based on gabor filter based enhancement technique and feature extraction techniques using texture based segmentation and SOM (Self Organization Map) which is a form of Artificial Neural Network (ANN) used to analyze the texture features extracted. SOM determines which texture feature has the ability to classify benign, malignant and normal cases. Watershed segmentation technique is used to classify cancerous region from the non cancerous region.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Medicinal Leaf Recognition Using Image Processing

ABSTRACT
            Image processing is the recent growing technique in the world. It refers to the processing of digital images by means of a digital computer. Images play a major role in human perception. Image analysis is between image processing and computer vision. There are no clear boundaries for in continuum with image processing and computer vision. The useful paradigms for computerized process in determining the image is classified in to three types are low-level process: involve primitive operation such as image pre processing to reduce noise, image enhancement and image sharpening, mid-level: image segmentation and high-level: making sense of image recognized. Nowadays image processing plays a major role in identification of all aspects. Here image processing technique is used for medicinal purpose by extracting the features of herbal leaf and authenticating it medicinal qualities. Leaves play the major role for the classification of plants. The sample leaves are taken from various places, plants and shape. The image is captured and further work is carried out. Comparison of test sample image with reference not only requires an experienced but is subjective and prone to human errors. By applying advanced technique of image processing and utilizing the capabilities of the recent advanced computing and data/image storage facilities and the use of computer techniques for analyzing the shape, texture, color, aspect ratio, vein structure, entropy, compactness and so on. The aim of the work is to classify and authenticate the medicinal plant materials and herbs widely used for Indian herbal medicinal preparation. The quality and authenticity of these leaves are to be ensured for the preparation of herbal medicines. The medicinal plant leaves are thoroughly screened, analyzed and compared with the database to give the correct measures of the texture to which category the leaf belongs to. This method is adopted due to the mistaken of lookalike leaves using image processing technique the mistaken of look-alike leaves can be authenticated by various parameters of the leaves. 

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Alzheimer Detection on MRI Images Using Image Processing IEEE Based Project

ABSTRACT
            Early detection of Alzheimer's disease (AD) is important so that preventative measures can be taken. Current techniques for detecting AD rely on cognitive impairment testing which unfortunately does not yield accurate diagnoses until the patient has progressed beyond a moderate AD. Alzheimer's disease considered being one of the acute diseases that cause the human death especially in people above 60 years old. Many computer-aided diagnosis systems are now widely spread to aid in Alzheimer diagnosis. Therefore, an automated and reliable computer-aided diagnostic system for diagnosing and classifying the brain diseases has been proposed. MRI (Magnetic resonance Imaging) is one source of brain diseases detection tools, but using MRI in Alzheimer classification is considered to be difficult process according to the variance and complexity of brain tissue. This project presents a survey of the most famous techniques used for the classification of brain diseases based on MRI.
      The Alzheimer detection and classification systems consist of four stages, namely, MRI preprocessing, Segmentation, Feature extraction, and Classification respectively. In the first stage, the main task is to eliminate the medical resonance images (MRI) noise which may cause due to light reflections or any inaccuracies in the imaging medium. The second stage, which is the stage where the region of interest is extracted (Alzheimer region). In the third stage, the features related to MRI images will be obtained and stored in an image vector to be ready for the classification process and
finally the fourth stages, where classifier will take place to specify the Alzheimer kind.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Iris Recognition Using Image Processing IEEE Based Project

ABSTRACT
               This project presents an iris coding method for effective recognition of an individual. The recognition is performed based on a mathematical and computational method called discrete cosine transform (DCT). It consists of calculating the differences of discrete cosine transform (DCT) coefficients of overlapped angular patches from the normalized iris image for the purpose of feature extraction. DCT is used because it offers efficiency, it is much more practical and its basis vectors are comprised of entirely real-valued components. Iris recognition belongs to the biometric identification. Biometric identification is a technology that is used for the identification an individual based on ones physiological or behavioral characteristics. Iris is the strongest physiological feature for the recognition process because it offers most accurate and reliable results. Iris recognition process mainly involves three stages namely, iris image preprocessing, feature extraction and template matching. In the pre-processing step, iris localization algorithm is used to locate the inner and outer boundaries of the iris. Detected iris region is then normalized to a fixed size rectangular block. In the feature extraction step, texture analysis method is used to extract significant features from the normalized iris image with the help of Discrete Cosine Transform (DCT).

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Character Recognition from Images Using Image Processing

ABSTRACT
                 Optical character recognition (OCR) is becoming a powerful tool in the field of Character Recognition, now a days. In the existing globalized environment, OCR can play a vital role in different application fields. Basically, OCR technique converts images into editable format. This technique converts images in the form of documents such as we can edit, modify and store data more safely for longtime. This paper presents basic of OCR technique with its components such as pre-processing, Feature Extraction, Classification, post-processing etc. There are various techniques have been implemented for the recognition of character. This Review also discusses different ideas implemented earlier for recognition of a character. This project may act as a supportive material for those who wish to know about OCR. Now a days, globalization is reaching to a great level. In this globalized environment, character recognition techniques also getting a valuable demand in number of application areas. OCR is an effective technique which converts image into suitable format such that data can be edit, modify and stored. This technique performs several operations such as, scans the input image, processes over the scanned image thereby image gets converted into portable formats .For instance, the hard copy of old historical books, novels, etc. .cannot be stored safely for a long time. Rather, its safety has limitations. If we apply OCR technique for such cases, the different historical documents can be stored, modified for a longtime. OCR also having variety of applications in almost all fields, including security. OCR implementation helps us to edit, store and process over the scanned data more effectively. User can handle the stored data whenever he wants with the internet support. So Optical character recognition is most successful application used in pattern recognition.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Audio Compression

ABSTRACT
         Speech compression is the technique of converting human speech into an efficiently encoded format that can later be decoded to produce a close approximation of the original signal. The merits of the compression technique are reduction in storage space, bandwidth, transmission power and energy. An efficient algorithm Discrete Wavelet Transform (DWT) is employed for decomposition of original signal into wavelets coefficients at different scales and positions and these coefficients are truncated to perform encoding and decoding. The compression technique used in this project is better than other earlier coding techniques like μ-law coding, code excited linear predictive coding. Speech compression plays a prominent role in speech signal processing such as satellite communications, internet communications, transmission of biomedical signals and other applications. Wavelet is one of the recent developments to overcome the limitations of Fourier transform of signal analysis which has the special ability to examine signal simultaneously in both time and frequency. Wavelet analysis is breaking up of an original signal into scaled and shifted versions called the mother wavelet. Wavelet Transform has emerged as a recent powerful mathematical tool in many areas of science and technology, more so in the field of signal processing

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Brain Tumor Detection on MRI Images Using Image Processing

ABSTRACT
          Image processing is an active research area in which medical image processing is a highly challenging field. Medical imaging techniques are used to image the inner portions of the human body for medical diagnosis. Brain tumor is a serious life altering disease condition. Image segmentation plays a significant role in image processing as it helps in the extraction of suspicious regions from the medical images. In this project we have proposed segmentation of brain MRI image using K-means clustering algorithm followed by morphological filtering which avoids the mis-clustered regions that can inevitably be formed after segmentation of the brain MRI image for detection of tumor location. In this project, we present a system based on enhancement technique and feature extraction techniques using segmentation and clustering used to analyze the texture features extracted texture feature has the ability to classify benign, malignant.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Lung Cancer Detection Using Image Processing

ABSTRACT
              The most common cause of lung cancer is long‐term exposure to tobacco smoke, which causes 80‐90% of lung cancers. Cancer cells can be carried away from the lungs in blood, or lymph fluid that surrounds lung tissue. Lymph flows through lymphatic vessels, which drain into lymph nodes located in the lungs and in the center of the chest. Lung cancer often spreads toward the center of the chest because the natural flow of lymph out of the lungs is toward the center of the chest. One of the major reason for non-accidental death is cancer. It has been proved that lung cancer is the topmost cause of cancer death in men and women worldwide. The death rate can be reduced if people go for early diagnosis so that suitable treatment can be administered by the clinicians within specified time. Cancer is, when a group of cells go irregular growth uncontrollably and lose balance to form malignant tumors which invades surrounding tissues. Cancer can be classified as Non-small cell lung cancer and small cell lung cancer. The various ways to detect lung cancer is by the use of image processing , pattern recognition and artificial neutral network to develop Computer aided diagnosis. In this project we use the techniques and algorithm used in image processing to detect cancer in three types of medical images. In this system first of all the medical images are recorded using a suitable imaging system. The images obtained are taken as input for the system where the image first go through the various steps of image processing like pre-processing, edge detection, morphological processing ,feature extraction.
                   Lung cancer which is among the five main types of cancer is a leading one to overall cancer mortality. Cancer is a serious health problem among various kinds of diseases. World Health Organization (WHO) reports that worldwide 7.6 million deaths are caused by cancer each year. Uncontrollable cell development in the tissues of the lung is called as lung cancer. Lung nodule is an abnormality that leads to lung cancer, characterized by a small round or oval shaped growth on the lung which appears as a white shadow in the CT scan. These uncontrollable cells restrict the growth of healthy lung tissues. If not treated, this growth can spread beyond the lung in the nearby tissue called metastasis and, form tumors. In order to preserve the life of the people who are suffered by the lung cancer disease, it should be pre‐diagnosed. The overall 5‐year survival rate for lung cancer patients increases from 14 to 49% if the disease is detected in time. So there is a need of pre-diagnosis system for lung cancer disease which should provide better results.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Cheque Number Recognition Using Image Processing

ABSTRACT
          Now a days CTS bank cheques are commonly used for many financial transactions globally and processed by clearance branches by using the distinct cheque number of the corresponding bank. The proposed work focuses on segmentation and recognition of bank cheque number using optical character recognition and statistical correlation function. In general bank cheques contain the cheque number at left bottom region which will be considered as the potential area for locating and segmenting the cheque number. A standard template of numerical digits will be created from 0 to 9 for matching with the test samples using standard statistical correlation function. The manual database will be created of bank cheque images including bank cheques are used for number recognition. The accuracy of the system is analyzed by the variation on the range of the cheque image with cheque number having different font, size, quotes and varieties of characters with noise. The efficiency of the system is evaluated through the experimental results extensively. 

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Lung Cancer Detection Using Image Processing

ABSTRACT
        Lung cancer prevalence is one of the highest of cancers, at 18 %. One of the first steps in lung cancer diagnosis is sampling of lung tissues or biopsy. These tissue samples are then microscopically analyzed. This procedure is taken once imaging tests indicate the presence of cancer cells in the chest. Lung cancer diagnosis using lung images. One of them is that doctor still relies on subjective visual observation. A medical specialist must do thorough observation and accurate analysis in detecting lung cancer in patients. Hence, there is need for a system that is capable for detecting lung cancer automatically from microscopic images of biopsy. This method will improve the accuracy and efficiency for lung cancer detection. The aim of this research is to design a lung cancer detection system based on analysis of microscopic image of biopsy using digital image processing. Microscopic images of biopsy are feature extracted with the Gray Level Co-Occurrence Matrix (GLCM) method and classified using back propagation neural network. This method is implemented to detection of lung cancer of lung samples.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Currency Recognition Using Image Processing

ABSTRACT
           The appearance of the currency is part of this development and it is affected directly, where there is exploited in incorrect form by copying the currency in a manner similar to the reality. Therefore, it became necessary to implement a proposal for being a suitable as solution not inconsistent with the different cultures, time and place. This clear through add the watermarks inside currency, which is difficult to be copied. At the same time, this watermarks may be visible to the naked eye so can easily inferred or it is invisible. However the high resolution imaging devices can copy these additions. In this research, we have proposed a system to distinguish the currencies by the program that working a submission inferred to the watermark by feature extraction determined the type of currency. In addition to, it determined category of the currency. Benefit of it, is reducing as much as possible the spread of counterfeit currency and this system can be used by any user wants to make sure of the currency.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Melanoma Detection / Skin Cancer Detection Using Image Processing

ABSTRACT
         Skin cancer – also known as malignant melanoma – is one of the deadliest form of cancer if not recognized in time. Since the pigmented areas/moles of the skin can be nicely observed by simple, non-invasive visual inspection (e.g. by a dermatoscope), the clinical protocols of its recognition also consider several visual features. Melanoma is the deadliest form of skin cancer, which is considered one of the most common human malignancies in the world. Early detection of this disease can affect the result of the illness and improve the chance of surviving. The tremendous improvement of deep learning algorithms in image recognition tasks promises a great success for medical image analysis, in particular, melanoma classification for skin cancer diagnosis. Activation functions play an important role in the performance of deep neural networks for image recognition problems as well as medical image classification. Melanin is the pigment that discerns the color of human skin. The special cells produce melanin in the skin. If these cells are damaged or unhealthy, skin discoloration is visible. Skin pigment discoloration on cheeks is a hazardous fact as a symptom of human skin disease with a possibility of losing natural beauty. The extracted information of the skin discoloration can work as a guide to diagnosis the disease. In this research, different imaging techniques like watershed method, edge detection and morphological operations are used to analyze and extract the information of cheek’s discoloration lesion by measuring the pixel number of lesion on skin. The image analyzing results are visually examined by the skin specialist and are observed to be highly accurate. The visual results are presented in the description and the accuracy of mathematical analysis is 94.88 percent.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Cotton Leaf Disease Detection and Classification Using Image Processing

ABSTRACT
            Cotton is one of the most important fiber crop which is used as raw material in textile industries. But, now-a-days cotton is facing number of problems related to the healthy growth of crop due to diseases. These diseases are reducing the productivity of cotton crop and farmers are getting suffered financially due to this crop loss. Agriculture is an important source of livelihood where 65% population is depend on it. The crop loss due to disease is increasing day by day which affects on the quality and productivity of crop. As diseases on the crop are certain, the early disease detection of the crop plays major role to control the loss in agriculture. In the proposed disease detection system, the work is carried out on cotton leaves. Initially the infected region is captured and pre-processed. During segmentation, leaf as well as diseased part is segmented using k means clustering method and different features are extracted such as color and texture with the help of color-co-occurrence method. Finally classification technique is used for detecting the diseases with the help of SVM (Support Vector Machine) classifier.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Blood Group Detection Using Image Processing

ABSTRACT
          Determining of blood types is very important during emergency situation before administering a blood transfusion. Presently, these tests are performed manually by technicians, which can lead to human errors. Determination of the blood types in a short period of time and without human errors is very much essential. A method is developed based on processing of images acquired during the slide test. The image processing techniques such as thresholding and morphological operations are used. The images of the slide test are obtained from the pathological laboratory are processed and the occurrence of agglutination are evaluated. Thus the developed automated method determines the blood type using image processing techniques. The developed method is useful in emergency situation to determine the blood group without human error. The slide test consists of the mixture of one drop of blood and one drop of reagent, being the result interpreted according to the occurrence or not of agglutination. The combination of the occurrence and non occurrence of the agglutination determines the blood type of the patient. 

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Audio Steganography

ABSTRACT
            Steganography is the art and science of writing hidden messages in such a way that no one, apart from the sender and intended recipient, suspects the existence of the message, a form of security through obscurity. Steganography works by replacing bits of useless or unused data in regular computer files (such as graphics, sound, text, HTML, or even floppy disks ) with bits of different, invisible information. This hidden information can be plain text, cipher text, or even images. The rapid development of multimedia and internet allows for wide distribution of digital media data. It becomes much easier to edit, modify and duplicate digital information. Besides that, digital documents are also easy to copy and distribute, therefore it will be faced by many threats. It is a big security and privacy issue, it become necessary to find appropriate rotation because of the significance, accuracy and sensitivity of the information. Steganography and Cryptography are considered as one of the techniques which are used to protect the important information, but both techniques have their pro’s and con’s. In this proposed system of audio steganography we have implemented a new scheme based on mel frequency components. The mel frequency cepstrum coefficients are used for finding the unique feature audio data in audio file. The returned features provide us with highly robust and high end features with low invariance. We have used this property of MFCC in order to detect high bandwidth free space location in the sound data and have embedded the encrypted watermark image data into these MFCC components. The proposed scheme works to increase the PSNR values and reduce the error rate of hiding the data in the image and thus improves the sound quality and makes it look original. The effect of MFCC is positive as the watermark extracted from this proposed scheme shows high correlation to the original watermark and also the resistance towards various attacks has also been improved, the attacks degrade the watermark due to high payload or bigger watermark size, the probability of extraction of watermark or steganograph data becomes higher.

PROJECT OUTPUT

PROJECT VIDEO


Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com
Share:

Popular Posts

OUR PROJECTS

Blog Archive

Recent Posts

CONTACT US

Mr. Roshan P. Helonde
Mobile: +917276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Theme Support

Need our help to upload or customize this blogger template? Contact me with details about the theme customization you need.