ABSTRACT
Automatic age and gender classification has become relevant to an increasing amount of applications, particularly since the rise of social platforms and social media. Nevertheless, performance of existing methods on real-world images is still significantly lacking, especially when compared to the tremendous leaps in performance recently reported for the related task of face recognition. In this project we show that by learning representations through the use of deep-convolutional neural networks (CNN), a significant increase in performance can be obtained on these tasks. To this end, we propose a simple convolutional net architecture that can be used even when the amount of learning data is limited. We evaluate our method on the recent Audience benchmark for age and gender estimation and show it to dramatically outperform current state-of-the-art methods.
PROJECT OUTPUT
PROJECT VIDEO
Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com
No comments:
Post a Comment